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Abstract

The newly developed topological indicesAm1–Am3 and the molecular connectivity indicesmX were applied to multivariate analysis in
structure–property correlation studies. The topological indices calculated from the chemical structures of some hydrocarbons were used to
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epresent the molecular structures. The prediction of the retention indices of the hydrocarbons on three different kinds of statio
n gas chromatography can be achieved applying artificial neural networks and multiple linear regression models. The result
rtificial neural networks approach were compared with those of multiple linear regression models. It is shown that the predict
f artificial neural networks is superior to that of multiple linear regression method under the experimental conditions in this pa

he topological indices2X andAm1 can improve the predicted results of the retention indices of the hydrocarbons on the stationa
tudied.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Retention indices are widely applied in gas chromato-
raphic separation techniques. The study of the relationship
etween the structural characteristics of compounds and their
etention behaviors is an important field in chromatographic
eparation techniques[1]. The correlation of molecular struc-
ural parameters and the corresponding chromatographic be-
aviors has been studied in different approaches[2–4]. How-
ver, the physicochemical parameters of many compounds
ave not been calculated yet[5]. Therefore, topological in-
ices are generated to describe the structural characteristics
f some molecules. Then, the topological indices can be ap-
lied as the connections between some specific properties
f compounds and their chemical structures. The topological

∗ Corresponding author. Tel.: +86 29 8830 2942; fax: +86 29 8830 3448.
E-mail address:huali@nwu.edu.cn (H. Li).

indices are the basis of the mathematical models for qua
tive structure–activity relationship (QSAR) and quantita
structure–property relationship (QSPR) studies. The me
of topological indexing of molecular structures has b
widely used in recent years in connection with QSAR/QS
The key step in the development of a topological index is
selection of a graph invariant, which is a value that ca
derived from the graph and is not affected by its node n
bering. Over a hundred of topological indices have been
scribed, such as the Wiener indexW[6], Randic index ID[7],
Hosoya indexZ [8], Balaban indexJ [9] and the generalαN
index[10]. Significant development has been found in the
creasingly widespread use of topological indices, a trend
has become of growing importance in recent years. The
logical indicesAm1–Am3 based on the augmented path ma
ces devised recently by our laboratory have been succes
employed in the studies on structure–activity relations
for alkanes, alcohols and barbiturates[11]. In another stud

039-9140/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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[12], we further utilized these indices and the molecular con-
nectivity indices[13] in the study of the structure–property
relationship between color reagents and their color reactions
with ytterbium. Some other researches about QSPR[14–16]
and QSAR[17] have also been developed in the authors’
laboratory.

Artificial neural networks (ANN) is often applied in non-
linear modeling processes. Generally speaking, ANN is bet-
ter than, or as good as multiple linear regression (MLR) in
modeling non-linear process. Therefore, ANN has been ap-
plied to optimize the separation performance in capillary
zone electrophoresis[18]. Moreover, ANN was also em-
ployed successfully in HPLC[19,20], ion chromatography
[21,22], gas chromatography[23–25], micellar electrokinetic
capillary chromatography[26,27] and capillary zone elec-
trophoresis[28] to predict the retention (or migration) be-
havior in these separation performances. Recently, the ap-
plications of ANN for quantitative analysis of chiral com-
pounds[29,30]and multicomponent determination[31] from
unresolved peaks in capillary electrophoresis have also been
reported.

In this paper, the newly devised topological indices
Am1–Am3 and the molecular connectivity indicesmX were
applied to predict the retention indices of hydrocarbons on
three different kinds of stationary phase in gas chromatogra-
phy by ANN and MLR. The study shows that ANN can give
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constructed. The elements in the first columns of matricesG1,
G2 andG3 are square roots of vertex degrees, and those in the
second columns are the square roots of the Van der Waals radii
of atoms. MatricesZ1, Z2 andZ3 can be calculated from ma-
tricesG1,G2 andG3, respectively, according to the following
formula:

Z1 = G1 × G′
1; Z2 = G2 × G′

2; Z3 = G3 × G′
3

whereG′
1, G′

2 andG′
3 are the transposed matrices ofG1, G2

andG3, respectively. The three new topological indices are
defined as:

Am1 = λmax1

2
; Am2 = λmax2

2
; Am3 = λmax3

2

whereλmax1, λmax2 andλmax3 are the largest eigenvalues of
matricesZ1, Z2 andZ3, respectively.

From the introductory section to the new topological index
described above, it is obvious that the three path matrices can
only account for the paths between the vertexes (atoms) in the
molecules when the path equals to 1, 2 and 3, respectively.
Therefore, the topological index generated only from the path
matrices cannot describe the different kinds of atoms in the
molecules or the bond properties between the corresponding
atoms. In order to generate a topological index that can repre-
sent the properties of miscellaneous atoms and the chemical
bonds connecting the corresponding atoms, the augmented
p roach
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etter predicted results than MLR.

. Theory

There have been many papers[32–34] that describe th
heory of ANN in detail. Error Back-Propagation (BP)
ne of the most widely used algorithms. In this work,
NN is applied to calculate the retention indices of

erent hydrocarbons on three kinds of gas chromatogr
olumns.

. Topological indices

The newly developed topological indicesAm1, Am2 and
m3 [11] are generated from path matricesA, B andC, re-
pectively. The three matrices are defined as follows:

A = aij,

{
1, path= 1

0, others(i, j= 1,2, . . . , n)

B = bij,

{
2, path= 2

0, others(i, j= 1,2, . . . , n)

C = cij,

{
3, path= 3

0, others(i, j= 1,2, . . . , n)

here n is the number of atoms in the correspond
olecules. By adding two columns into matricesA, B and
, respectively, augmented path matricesG1, G2 andG3 are
ath matrices were constructed according to the app
escribed above. Since the augmented path matrices in
ot only the “path” information but also the “property” on

he proposed topological indices based on the augmente
atrices can explain the molecular structures better. H

he proposed topological indices may describe some m
lar properties, such as lipophilicity, branching, etc. be

han other kinds of topological indices.

. Experimental

The neural network software applied in this work inclu
wo models: BP and quasi-Newton neural networks.
oftware was developed in our laboratory. All computat
ere performed using multivariate statistic analysis prog

MSAP) package, which consists of multivariate regres
nalysis, pattern recognition and calculations of topo
al indices, etc. The retention indices of 18 hydrocarb
ere acquired from the stationary phase ofn-octadecane i
C, and those of the 16 hydrocarbons (among the 18
rocarbons mentioned) were from the stationary phas
-octadecylchloride and 1-octadecanol. All the retention
ices were cited from the paper published[35]. The reten

ion indices of the 18 compounds investigated in this w
n different stationary phase, the newly devised topo
al indicesAm and the molecular connectivity indicesmX of
he different compounds are given inTable 1. The chemic
tructures of the corresponding hydrocarbons are sho
ig. 1.
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Table 1
Specific retention indices and two kinds of topological indices of some hydrocarbon compounds

Compounds n-Octadecane 1-Octadecylchloride 1-OctadecanolAm1 Am2 Am3
0X 1X 2X

n-Pentane 500 500 500 9.897 11.661 12.250 4.121 2.414 1.354
2,2-Dimethylbutane 538 521 521 12.265 25.316 20.659 5.207 2.501 2.914
Cyclopentane 561 547 565 11.500 17.500 27.500 3.536 2.500 1.768
3-Methypentane 583 576 575 12.053 16.650 21.840 4.992 2.808 1.922
n-Hexane 600 600 600 11.896 14.329 14.840 4.823 2.914 1.707
2,4-Dimethylpentane 629 624 625 14.041 22.645 20.265 5.862 3.126 3.023
Benzene 636 697 676 16.400 22.400 18.900 4.243 3.000 2.121
Cyclohexane 656 – – 14.000 19.400 15.400 4.243 3.000 2.121
2,3-Dimethylpentane 670 667 668 14.107 20.772 30.774 5.862 3.181 2.630
3-Methylhexane 675 – – 13.991 19.513 23.409 5.699 3.308 2.302
n-Heptane 700 700 700 13.863 16.885 18.860 5.536 3.414 2.061
2,2-Dimethylhexane 719 716 718 16.047 28.768 23.761 6.621 3.561 3.554
2,5-Dimethylhexane 728 724 725 15.944 22.871 21.779 6.569 3.628 3.365
2,2,3-Trimethylpentane 735 734 728 16.200 29.463 40.499 6.784 3.481 3.675
2,3,4-Trimethylpentane 750 749 753 16.105 25.215 38.462 6.732 3.558 3.347
2-Methylheptane 764 763 764 15.877 21.468 23.826 6.406 3.770 2.890
2,2,5-Trimethylhexane 776 770 771 17.985 30.603 25.912 7.492 3.917 4.493
n-Octane 800 800 800 15.811 19.238 22.150 6.242 3.914 2.414
Fig. 1. The structures of the co
rresponding hydrocarbons.
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5. Results and discussion

5.1. Calculation of topological index

The topological indicesAm1–Am3 and the molecular con-
nectivity indices0X–2X were calculated using the MSAP
package. A total of six topological indices were guaranteed
for each hydrocarbon.

5.2. Input variable selection

According to the calculated results through MLR, it
is shown that the topological indicesAm1 and 1X have
good correlation to the retention indices. Furthermore, the
combination of Am1, 1X and 2X can also give better-
predicted results through MLR. So both the combina-
tion of Am1 and 1X and that ofAm1, 1X and 2X were
used as the input variables of ANN, respectively. All
the calculated results of MLR are shown inTables 2–4,
respectively.

Table 2
Calculated results of MLR usingAm

T
i

anol

A

A

A

A

A

A

A

n
l

Table 3
Calculated results of MLR usingmX

Topological
index

Stationary phase

n-Octadecane 1-Octadecylchloride 1-Octadecanol
0X
n 18 16 16
s 210.8607 146.6521 139.6329
R 0.7784 0.7141 0.7455

1X
n 18 16 16
s 42.7935 60.5458 56.3637
R 0.8788 0.7867 0.8169

2X
n 18 16 16
s 69.3215 82.0716 80.2848
R 0.6316 0.5417 0.5772

0X1X
n 18 16 16
s 44.1197 62.4705 58.2166
R 0.8755 0.7893 0.8212

0X2X
n 18 16 16
s 56.1728 66.6626 63.2142
R 0.7917 0.7564 0.7849

0X1X2X
n 18 16 16
s 45.6481 64.7715 60.3940
R 0.8786 0.7911 0.8225

n is the number of experimental samples;s is standard deviation;R is corre-
lation coefficient.

5.3. n-Octadecane stationary phase

The relationship between the topological indices and the
retention indices of the 18 kinds of hydrocarbons was inves-
tigated.

5.3.1. Case I
Am1 and1Xwere the input variables of the ANN, and the

output of the ANN was the retention index of the correspond-
ing compound. The process of optimizing the number of logic
units in the hidden layer in Case I is shown inFig. 2. The logic

Table 4
Calculated results of MLR using1X, 2X andAm1

Stationary phase

n-Octadecane 1-Octadecylchloride 1-Octadecanol

A 24.2834 −13.0523 −6.6093
B 26.3369 35.2631 32.4803
C 110.9453 93.4988 100.2300
opological
ndex

Stationary phase

n-Octadecane 1-Octadecylchloride 1-Octadec

m1

n 18 16 16
s 41.7298 38.2497 40.4755
R 0.8844 0.9208 0.9113

m2

n 18 16 16
s 74.2697 82.2550 86.1633
R 0.5586 0.5442 0.5492

m3

n 18 16 16
s 78.4931 87.8277 87.0063
R 0.4788 0.4944 0.4682

m1Am2

n 18 16 16
s 38.1667 27.7666 32.6496
R 0.9106 0.9620 0.9474

m2Am3

n 18 16 16
s 74.9579 84.5335 83.5937
R 0.5827 0.5623 0.5733

m1Am3
n 18 16 16
s 42.8311 39.6925 41.8907
R 0.8859 0.9208 0.9118

m1Am2Am3

n 18 16 16
s 36.5448 25.2547 26.6787
R 0.9240 0.9711 0.9602

is the number of experimental samples;s is standard deviation;R is corre-
ation coefficient.

D −22.9744 −46.5818 −42.1076
n 15a 13a 13a

s 11.3961 9.6486 11.0013
R 0.9930 0.9960 0.9948

A,B,C andD are the coefficients of the regression equation, which can be
described as retention index =A+B Am1 +C 1X+D 2X. n is the number of
experimental samples;s is standard deviation;R is correlation coefficient.

a For the hydrocarbons studied on each stationary phase, three of the com-
p t.
ounds were used as verification set, and the others were training se
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Fig. 2. The optimization of the number of the nodes in the hidden layer of
ANN applied on then-octadecane stationary phase in Case I.

units in the hidden layer were optimized to be three, so a 2:3:1
architecture of ANN can be acquired. The samples composed
by the 18 compounds were divided into two sets at random.
One is a training set, including 14 compounds; the other is
a verification set, including four compounds. The MSAP for
calculation can search the optimized training times automat-
ically, so “over training” can be avoided conveniently. The
predicted residual of the ANN and that of the MLR were
calculated by formula(1):

Epred =
√∑P

p=1(iptrue− ippred)2√∑P
p=1(iptrue)2

(1)

In the formula,Epred is the predicted residual,iptrue is the
target retention index andippredis the predicted one.P is the
number of all the samples in the training and the verification
sets.

5.3.2. Case II
The input values of the ANN were the combination of1X,

2XandAm1. The output values of the ANN were the retention
indices of the corresponding compounds. The process of op-
timizing the number of logic units in the hidden layer in Case
II is shown inFig. 3. The optimized number of the logic units
in the hidden layer was two. So ANN of 3:2:1 architecture
c mong
w et at
r

ated
b and
t e of
t

Fig. 3. The optimization of the number of the nodes in the hidden layer of
ANN applied on then-octadecane stationary phase in Case II.

FromTable 5, it is shown that ANN has better-predicted
results than MLR models. In the case of the stationary phase,
1X, 2X andAm1 networks has a better predictive ability than
Am1 and1X networks.

5.4. 1-Octadecylchloride stationary phase

On the stationary phase, the relationship between the topo-
logical indices and the retention indices of the 16 hydrocar-
bons was also studied.

Table 5
Comparison between the target and the predicted retention indices of the
compounds on the n-octadecane stationary phase

Predicted
results of
Case I

Predicted
results of
case II

Predicted
results by
MLR

Target
indices

540.6 539.1 521.7 500
549.5 540.3 557.8 538
545.9 558.6 563.9 561
587.9 584.9 609.1 583
604.7 596.8 621.7 600
650.9 640.5 671.4 629
645.0 643.6 740.3 636
634.7 645.4 677.1 656
658.7 660.0 688.3 670
677.0 678.3 706.9 675
694.3 695.8 720.8 700

R

an be constructed. The sample has 18 compounds, a
hich four were chosen to be used as a verification s

andom, and the others were used as a training set.
The predicted residuals of the ANN were also calcul

y formula(1). The predicted values, the target values
he ANN predicted residuals of the two cases and thos
he MLR models are shown inTable 5.
737.2 735.6 760.3 719
748.6 748.1 769.4 728
722.6 719.1 752.7 735
736.9 732.6 766.3 750
769.4 769.5 794.3 764
787.6 790.2 829.3 776
782.7 784.3 819.5 800

esiduals 2.42% 2.13% 5.54%
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5.4.1. Case I
Am1 and1X were also used as the input variables of the

ANN. The output values of the ANN were also the retention
indices of the compounds. The optimized number of logic
units in the hidden layer was three, so a 2:3:1 architecture
ANN was acquired. The 16 compounds were divided into two
parts, one was a verification set, including four compounds,
and the other was a training set, including 12 compounds.
The predicted residual of the ANN was also calculated by
formula(1).

5.4.2. Case II
In this case, the input values of ANN were1X, 2X and

Am1. The output values of ANN were the retention indices
of the corresponding compounds. The optimized number of
the logic units in the hidden layer was three, so a 3:3:1 archi-
tecture of ANN was formed. There were 16 compounds in
the sample, among which four compounds were selected at
random to be a verification set; and the others were used as
a training set. The predicted residual of the ANN was calcu-
lated by formula(1).

The predicted values, the target values and the ANN pre-
dicted residuals of case I, case II and those of the MLR models
are shown inTable 6.

FromTable 6, it is shown that the predicted results of ANN
are better than those of the MLR models. On the other hand,
A ve
b

5

ices
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Table 7
Comparison between the target and the predicted retention indices of the
compounds on the 1-octadecanol stationary phase

Predicted
results of
Case I

Predicted
results of
case II

Predicted
results by
MLR

Target
indices

530.5 538.2 499.8 500
547.9 524.0 519.7 521
541.9 564.6 543.0 565
576.7 584.1 585.4 575
589.2 598.7 600.0 600
656.4 611.6 635.5 625
666.0 680.8 737.4 676
666.3 664.8 659.7 668
704.0 707.2 699.1 700
738.1 733.6 721.9 718
747.2 741.8 733.2 725
727.5 726.2 713.7 728
737.9 741.1 732.2 753
765.0 754.7 765.3 764
779.5 759.9 780.9 771
779.0 760.0 797.6 800

Residuals 2.63% 2.43% 2.72%

5.5.1. Case I
We use1X andAm1 as the input values of ANN again.

The output values of the ANN were still the retention indices
of the corresponding compounds. The optimized number of
the logic units in the hidden layer was three, then ANN of
2:3:1 architecture was created. Among the 16 compounds of
the sample, four of them were selected at random as the ver-
ification set, and the others were used as the training set. The
predicted residual of the ANN was calculated by formula(1),
too.

5.5.2. Case II
1X, 2X andAm1 were used as the input variables of the

ANN, and the output values of the ANN were the retention
indices of the corresponding compounds. The best number
of the logic units in the hidden layer was three, so a 3:3:1
ANN was applied in this case. Of all the 16 compounds, four
were composed of the verification set, and the others were
used as the training set. The predicted residual of the ANN
was calculated by formula(1), too.

The predicted values, the target values, and the ANN pre-
dicted residuals of the two cases and those of the MLR models
are shown inTable 7.

From the calculated results, a conclusion can be drawn
that ANN using1X, 2X andAm1 as input variables can give
the best-predicted results in this case. On the other hand, we
f than
t

6

hed
A xper-
NN using 1X, 2X andAm1 as the input variables can gi
etter-predicted results than ANN using1X andAm1 can.

.5. 1-Octadecanol stationary phase

The correlation relationship between the retention ind
f the 16 compounds and the corresponding topologica
ices was studied on the stationary phase.

able 6
omparison between the target and the predicted retention indices
ompounds on the 1-octadecylchloride stationary phase

Predicted
results of
Case I

Predicted
results of
case II

Predicted
results by
MLR

Target
indices

525.0 518.2 498.6 500
531.8 521.4 517.5 521
530.2 529.6 543.9 547
577.4 567.4 585.0 576
597.7 588.2 599.4 600
657.7 628.4 633.5 624
695.6 697.7 747.0 697
664.7 657.3 659.3 667
694.9 714.5 699.0 700
723.5 731.7 720.2 716
731.6 743.0 731.6 724
719.4 719.8 712.5 734
723.7 737.8 731.6 749
760.7 764.0 764.7 763
770.5 769.5 778.1 770
787.8 777.1 798.0 800

esiduals 2.14% 1.90% 2.24%
ound that the MLR model gave worse predicted results
hose of ANN using1X andAm1 as the input values.

. Testing the established models

In order to test the predictive ability of the establis
NN models, a test data set was constructed in the e
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Table 8
The predicted residuals of all the experimental samples used as test speci-
mens in established ANN models

n-Octadecane
stationary phase (%)

1-Octadecyl-
chloride stationary
phase (%)

1-Octadecanol
stationary phase
(%)

Case I 3.72 4.11 4.39
Case II 3.41 3.97 3.96

imental samples acquired from each kind of GC stationary
phase. In each experimental data set, every experimental sam-
ple was applied as test sample once while the other samples
were used as training or verification data set. All the cor-
responding established ANN models were based on the op-
timized structures of neural networks. The predicted resid-
uals between the target and the predicted retention indices
were also calculated by formula(1). All the calculated re-
sults of this section are listed inTable 8. It is shown that for
all the experimental samples on each kind of GC stationary
phase, ANN using1X, 2XandAm1 as input variables can pre-
dict the retention indices of the corresponding hydrocarbons
better than ANN applying1X andAm1 as the input values
can.

7. Conclusions

From the research results above, it can be concluded that
ANN have more powerful predictive ability than MLR. That
is to say, ANN can give better-predicted results than MLR
in non-linear problems in general. On the other hand, for
the retention indices of the hydrocarbons on the three kinds
of stationary phase, the introduction of the input variable
2X to ANN leads to better-predicted results. It is shown

F e in
C

that the molecular connectivity index2X has more corre-
lation to the retention indices of the hydrocarbons on the
stationary phase studied in this paper. According to the cal-
culated results of MLR, to all the three kinds of the sta-
tionary phase, only by introducing the new topological in-
dexAm1 can better-predicted results be acquired. Probably
the new topological indexAm1 can represent the retention
behavior of the compounds on the stationary phase better
than the molecular connectivity indicesmX. The predicted
retention indices on then-octadecane stationary phase in
Case I versus the experimental retention indices is shown in
Fig. 4.
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