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Abstract

The newly developed topological indicég,:—Ansz and the molecular connectivity indic&X were applied to multivariate analysis in
structure—property correlation studies. The topological indices calculated from the chemical structures of some hydrocarbons were used to
represent the molecular structures. The prediction of the retention indices of the hydrocarbons on three different kinds of stationary phase
in gas chromatography can be achieved applying artificial neural networks and multiple linear regression models. The results from the
artificial neural networks approach were compared with those of multiple linear regression models. It is shown that the predictive ability
of artificial neural networks is superior to that of multiple linear regression method under the experimental conditions in this paper. Both
the topological indice$X and Ay, can improve the predicted results of the retention indices of the hydrocarbons on the stationary phase
studied.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction indices are the basis of the mathematical models for quantita-
tive structure—activity relationship (QSAR) and quantitative
Retention indices are widely applied in gas chromato- structure—property relationship (QSPR) studies. The method
graphic separation techniques. The study of the relationshipof topological indexing of molecular structures has been
between the structural characteristics of compounds and theimwidely used in recent years in connection with QSAR/QSPR.
retention behaviors is an important field in chromatographic The key step in the development of a topological index is the
separation techniqugg]. The correlation of molecular struc-  selection of a graph invariant, which is a value that can be
tural parameters and the corresponding chromatographic bederived from the graph and is not affected by its node num-
haviors has been studied in different approa¢ked]. How- bering. Over a hundred of topological indices have been de-
ever, the physicochemical parameters of many compoundsscribed, such as the Wiener indé¥6], Randic index I07],
have not been calculated y{&]. Therefore, topological in-  Hosoya indexZ [8], Balaban indexJ [9] and the generaty
dices are generated to describe the structural characteristicindex[10]. Significant development has been found in the in-
of some molecules. Then, the topological indices can be ap-creasingly widespread use of topological indices, a trend that
plied as the connections between some specific propertieshas become of growing importance in recent years. The topo-
of compounds and their chemical structures. The topological logical indicesAm1—Amn3 based on the augmented path matri-
ces devised recently by our laboratory have been successfully
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[12], we further utilized these indices and the molecular con- constructed. The elements in the first columns of mat®es
nectivity indices[13] in the study of the structure—property G, andGs are square roots of vertex degrees, and those in the
relationship between color reagents and their color reactionssecond columns are the square roots of the Van der Waals radii

with ytterbium. Some other researches about QEPR16] of atoms. Matrice€y, Z, andZ3 can be calculated from ma-
and QSARJ[17] have also been developed in the authors’ tricesG;, G, andGs, respectively, according to the following
laboratory. formula:

Artificial neural networks (ANN) is often applied in non-
linear modeling processes. Generally speaking, ANN is bet-

ter than, or as gOOd as multlple linear regression (MLR) in whereG/, G/Z andG’3 are the transposed matrices@®if, Gy

modeling non-linear process. Therefore, ANN has been ap-andGs, respectively. The three new topological indices are
plied to optimize the separation performance in capillary defined as:

zone electrophoresifl8]. Moreover, ANN was also em- Amaxl Amax2 Amax3
ployed successfully in HPLE19,20], ion chromatography  Am1 = 5 ; > ; >

[21,22], gas chromatograpf3—25], micellar electrokinetic

capillary chromatograph{26,27] and capillary zone elec-  Wheréimaxi, Amax2 @andimaxz are the largest eigenvalues of
trophoresig28] to predict the retention (or migration) be- ~MatricesZy, Z, andZs, respectively.

havior in these separation performances. Recently, the ap- Fromtheintroductory section to the new topological index
plications of ANN for quantitative analysis of chiral com- described above, itis obvious that the three path matrices can

Z1=G1XG€L; Z2=G2XG’2; Zg=G3XG/3

poundg29,30]and multicomponent determinatif8i] from only account for the paths between the vertexes (atoms) i_n the
unresolved peaks in capillary electrophoresis have also beerinolecules when the path equals to 1, 2 and 3, respectively.
reported. Therefore, the topological index generated only from the path

In this paper, the newly devised topological indices matrices cannot describe the different kinds of atoms in the
Ami—Anz and the molecular connectivity indic&X were molecules or the bond properties between the corresponding
applied to predict the retention indices of hydrocarbons on atoms. Inorder to generate a topological index that can repre-
three different kinds of stationary phase in gas chromatogra-Sent the properties of miscellaneous atoms and the chemical

phy by ANN and MLR. The study shows that ANN can give bonds connecting the corresponding atoms, the augmented
better predicted results than MLR. path matrices were constructed according to the approach

described above. Since the augmented path matrices include
not only the “path” information but also the “property” one,

2. Theory the p_roposed topolqgical indices based on the augmented path
matrices can explain the molecular structures better. Hence,

There have been many papé8&—34] that describe the  the proposed topological indices may describe some molec-
theory of ANN in detail. Error Back-Propagation (BP) is ular properties, such as lipophilicity, branching, etc. better
one of the most widely used algorithms. In this work, BP than other kinds of topological indices.

ANN is applied to calculate the retention indices of dif-

ferent hydrocarbons on three kinds of gas chromatography
columns. 4. Experimental

The neural network software applied in this work includes
3. Topological indices two models: BP and quasi-Newton neural networks. The
software was developed in our laboratory. All computations

The newly developed topological indicég1, Amz and were performed using multivariate statistic analysis program

Ams [11] are generated from path matricasB andC, re- (MSAP) package, which consists of multivariate regression
spectively. The three matrices are defined as follows: analysis, pattern recognition and calculations of topologi-
cal indices, etc. The retention indices of 18 hydrocarbons
A—a { 1, path=1 were acquired from the stationary phasenafctadecane in
v 0, others(i, j=1,2,...,n) GC, and those of the 16 hydrocarbons (among the 18 hy-
drocarbons mentioned) were from the stationary phase of
B = by, 2, .péthz 2 1-octadecylchloride and 1-octadecanol. All the retention in-
0, others(i, j/=1,2,...,n) dices were cited from the paper publisH&8]. The reten-
3, path=3 tion indices of the 18 compounds investigated in this work
C =cy, {O h 19 on different stationary phase, the newly devised topologi-
. others(i, j=1,2,....n) cal indicesAny, and the molecular connectivity indicB% of

where n is the number of atoms in the corresponding the different compounds are givenTable 1. The chemical
molecules. By adding two columns into matrioksB and structures of the corresponding hydrocarbons are shown in
C, respectively, augmented path matriGas G, andGg are Fig. 1.
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Table 1
Specific retention indices and two kinds of topological indices of some hydrocarbon compounds
Compounds n-Octadecane 1-Octadecylchloride 1-OctadecanolAm1 Am2 Am3 0x X 2x
n-Pentane 500 500 500 9.897 11.661 12.250 4.121 2.414 1.354
2,2-Dimethylbutane 538 521 521 12.265 25.316 20.659 5.207 2.501 2914
Cyclopentane 561 547 565 11.500 17.500 27.500 3.536 2.500 1.768
3-Methypentane 583 576 575 12.053 16.650 21.840 4.992 2.808 1.922
n-Hexane 600 600 600 11.896 14.329 14.840 4.823 2.914 1.707
2,4-Dimethylpentane 629 624 625 14.041 22.645 20.265 5.862 3.126 3.023
Benzene 636 697 676 16.400 22.400 18.900 4.243 3.000 2.121
Cyclohexane 656 - - 14.000 19.400 15.400 4.243 3.000 2.121
2,3-Dimethylpentane 670 667 668 14.107 20.772 30.774 5.862 3.181 2.630
3-Methylhexane 675 - - 13.991 19.513 23.409 5.699 3.308 2.302
n-Heptane 700 700 700 13.863 16.885 18.860 5.536 3.414 2.061
2,2-Dimethylhexane 719 716 718 16.047 28.768 23.761 6.621 3.561 3.554
2,5-Dimethylhexane 728 724 725 15.944 22.871 21.779 6.569 3.628 3.365
2,2,3-Trimethylpentane 735 734 728 16.200 29.463 40.499 6.784 3.481 3.675
2,3,4-Trimethylpentane 750 749 753 16.105 25.215 38.462 6.732 3.558 3.347
2-Methylheptane 764 763 764 15.877 21.468 23.826 6.406 3.770 2.890
2,2,5-Trimethylhexane 776 770 771 17.985 30.603 25.912 7.492 3.917 4.493
n-Octane 800 800 800 15.811 19.238 22.150 6.242 3.914 2.414

Fig. 1. The structures of the corresponding hydrocarbons.
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5. Results and discussion

5.1. Calculation of topological index

Table 3

Calculated results of MLR usingX

Topological  Stationary phase

1-Octadecylchloride

1-Octadecanol

index
n-Octadecane
The topological indice#\ny1—Anz and the molecular con-  °X
nectivity indices®X-2X were calculated using the MSAP D 21?) a607 11f6 6521
package. A total of six topological indices were guaranteed ‘; 0.7784 07141
for each hydrocarbon. ) ’ '
X
n 18 16
5.2. Input variable selection s 42,7935 60.5458
R 0.8788 0.7867
According to the calculated results through MLR, it 2X
is shown that the topological indice&m1 and 1X have 2 ég 215 1862 0716
good correlation to the retention indices. Furthermore, the [ 06316 05417
combination of An1, 1X and 2X can also give better- oyix
predicted results through MLR. So both the combina- 18 16
i 1 1 2
tion of Am1 aqd X and_ that of Am1, “X and X_Were s 44.1197 62.4705
used as the input variables of ANN, respectively. All R 0.8755 0.7893
the calculated results of MLR are shown Tables 2-4, ox2x
respectively. n 18 16
s 56.1728 66.6626
R 0.7917 0.7564
Oyly2
Table 2 XXX 18 16
Calculated results of MLR usingy, n
s 45.6481 64.7715
Topological  Stationary phase R 0.8786 0.7911

16
139.6329
0.7455

16
56.3637
0.8169

16
80.2848
0.5772

16
58.2166
0.8212

16
63.2142
0.7849

16
60.3940
0.8225

index
n-Octadecane 1-Octadecylchloride 1-Octadecanol nisthe number of experimental sampless standard deviatioR is corre-
lation coefficient.
Am1
n 18 16 16 5.3. n-Octadecane stationary phase
s 41.7298 38.2497 40.4755
R 0.8844 0.9208 0.9113 ) ) o
The relationship between the topological indices and the
A‘“rf 18 16 16 retention indices of the 18 kinds of hydrocarbons was inves-
s 74.2697 82.2550 86.1633 tigated.
R 0.5586 0.5442 0.5492
Ama 5.3.1. Casel
n 18 16 16 Amz1 and!X were the input variables of the ANN, and the
S 78.4931 87.8277 87.0063 output of the ANN was the retention index of the correspond-
R 0.4788 0.4944 0.4682 ing compound. The process of optimizing the number of logic
Am1Am2 unitsinthe hidden layerin Case | is showrHg. 2. The logic
n 18 16 16
s 38.1667 27.7666 32.6496 Table 4
R 0.9106 0.9620 0.9474 Calculated results of MLR usintX, 2X andAm1
Am2Am3 Stationary phase
n 18 16 16 .
S 24.9579 84.5335 83.5037 n-Octadecane 1-Octadecylchloride 1-Octadecanol
R 0.5827 0.5623 0.5733 A 24.2834 —13.0523 —6.6093
B 26.3369 35.2631 32.4803
Am1Am3 c 110.9453 93.4988 100.2300
n 18 16 16 D —22.9744 _46.5818 _42.1076
s 42.8311 39.6925 41.8907 n 15 13 13
R 0.8859 0.9208 0.9118 s 11.3961 9.6486 11.0013
AmiAnzAm3 R 0.9930 0.9960 0.9948
n 18 16 16 A, B, C andD are the coefficients of the regression equation, which can be
S 36.5448 25.2547 26.6787 described as retention index= B Ani + C 1X+D 2X. n is the number of
R 0.9240 0.9711 0.9602

nis the number of experimental sampless standard deviatiorR is corre-
lation coefficient.

experimental samples;s standard deviatiorR is correlation coefficient.
a For the hydrocarbons studied on each stationary phase, three of the com-
pounds were used as verification set, and the others were training set.
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The RMS residuals of the training set and the

The RMS residuals of the verification set and the

10 * ; * ’ 0 1 2 3 4 s 6
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The number of nodes in the hidden layer The number of nodes in the hidden layer

—4— The RMS residuals of the training set versus the number of nodes in
hidden layer
—&— The RMS residuals of the training set versus the number of ~8~Ths RMS residuals of the verifeation set versis the number of
nodes in hidden layer nodes in hidden layer
—®— The RMS residuals of the verification set versus the number of

nodes in hidden layer Fig. 3. The optimization of the number of the nodes in the hidden layer of

ANN applied on then-octadecane stationary phase in Case II.
Fig. 2. The optimization of the number of the nodes in the hidden layer of

ANN appli then-oct tati hase in Case I. o .
applied on then-octadecane stationary phase in Case FromTable 5, it is shown that ANN has better-predicted

units in the hidden layer were optimized to be three, so a 2:3:1results than MLR models. In the case of the stationary phase,
architecture of ANN can be acquired. The samples composed!X, 2X andAn1 networks has a better predictive ability than
by the 18 compounds were divided into two sets at random. Amz and'X networks.

One is a training set, including 14 compounds; the other is

a verification set, including four compounds. The MSAP for 5.4, 1-Octadecylchloride stationary phase

calculation can search the optimized training times automat-

ically, so “over training” can be avoided conveniently. The ~ Onthe stationary phase, the relationship between the topo-
predicted residual of the ANN and that of the MLR were logical indices and the retention indices of the 16 hydrocar-

calculated by formuldl): bons was also studied.
\/zgzl(iptrue - l'ppred)2 Table 5
Epred = 8} Comparison between the target and the predicted retention indices of the
£/ Zf;:l(iptrue)z compounds on the n-octadecane stationary phase
. . . . Predicted Predicted Predicted Target
In the formula,Epreq is the predicted residualgye is the results of results of results by indices
target retention index arigpreqis the predicted ond? is the Casell case Il MLR
number of all the samples in the training and the verification 540.6 539.1 5217 500
sets. 549.5 540.3 557.8 538
545.9 558.6 563.9 561
532 Casell 587.9 584.9 609.1 583
, The input values of the ANN were the combinatiort ¥ _ ggg:; 222:2 g?ﬂ ggg
XandAn:. The output values of the ANN were the retention 645.0 643.6 740.3 636
indices of the corresponding compounds. The process of op- 634.7 645.4 677.1 656
timizing the number of logic units in the hidden layer in Case 658.7 660.0 688.3 670
677.0 678.3 706.9 675

Il'is shown inFig. 3. The optimized number of the logic units

. ; A . 694.3 695.8 720.8 700
in the hidden layer was two. So ANN of 3:2:1 architecture 7372 735.6 760.3 719
can be constructed. The sample has 18 compounds, among 748.6 748.1 769.4 728
which four were chosen to be used as a verification set at 722.6 719.1 752.7 735
random, and the others were used as a training set. 736.9 732.6 766.3 750
The predicted residuals of the ANN were also calculated 769.4 7695 7943 764

by formula(1). The predicted values, the target values and 781.6 790.2 829.3 776
y - P , g 782.7 784.3 819.5 800

the ANN predicted residuals of the two cases and those of
the MLR models are shown ifable 5. Residuals _ 2.42% 2.13% 5-54%
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5.4.1. Casel Table 7

Amz and 1x were also used as the input variables of the Comparison between the target and the predicted retention indices of the
ANN. The output values of the ANN were also the retention S2mPounds on the 1-octadecanol stationary phase
indices of the compounds. The optimized number of logic Predicted ~ Predicted  Predicted  Target

units in the hidden layer was three, so a 2:3:1 architecture ?j:gsl of Lzsslgtlsl of ﬁfgts by indices
ANN was acquired. The 16 compounds were divided into two
P : . 530.5 538.2 499.8 500
parts, one was a verification set, including four compounds, 5479 524.0 519.7 521
and the other was a training set, including 12 compounds. 541.9 564.6 543.0 565
The predicted residual of the ANN was also calculated by 576.7 584.1 585.4 575
formula(1). 589.2 598.7 600.0 600
656.4 611.6 635.5 625
542 Casell o me e
In this case, the input values of ANN wetX, X and 704.0 707.2 699.1 700
Am1. The output values of ANN were the retention indices 738.1 733.6 721.9 718
of the corresponding compounds. The optimized number of 747.2 7418 733.2 725
the logic units in the hidden layer was three, so a 3:3:1 archi- 727.5 726.2 713.7 728
tecture of ANN was formed. There were 16 compounds in ;22:8 ;3411:% ;222 ;Zi
the sample, among which four compounds were selected at 779.5 759.9 780.9 771
random to be a verification set; and the others were used as 779.0 760.0 797.6 800
a training set. The predicted residual of the ANN was calcu- g.ciquals 2 63% 2 43% 2720

lated by formulg(1).
The predicted values, the target values and the ANN pre-
dictedresiduals of case |, case |l and those of the MLR models5.5.1. Case |
are shown inrable 6. We uselX and Ay as the input values of ANN again.
FromTable 6, itis shown that the predicted results of ANN  The output values of the ANN were still the retention indices
are better than those of the MLR models. On the other hand, of the corresponding compounds. The optimized number of
ANN using 1X, 2X and A1 as the input variables can give the logic units in the hidden layer was three, then ANN of

better-predicted results than ANN usitig andAn,; can. 2:3:1 architecture was created. Among the 16 compounds of
the sample, four of them were selected at random as the ver-
5.5. 1-Octadecanol stationary phase ification set, and the others were used as the training set. The

predicted residual of the ANN was calculated by formdlp
The correlation relationship between the retention indices too.
of the 16 compounds and the corresponding topological in-

dices was studied on the stationary phase. 5.5.2. Casell
1X, 2X and Am1 were used as the input variables of the
Table 6 ANN, and the output values of the ANN were the retention
Comparison between the target and the predicted retention indices of theindices of the corresponding compounds. The best number
compounds on the 1-octadecylchloride stationary phase of the logic units in the hidden layer was three, so a 3:3:1
Predicted Predicted Predicted Target ANN was applied in this case. Of all the 16 compounds, four
results of results of resultsby indices were composed of the verification set, and the others were
Casel case |l MLR used as the training set. The predicted residual of the ANN
525.0 518.2 498.6 500 was calculated by formulél), too.
ggég gg;g ggg 2421% The predicted values, the target values, and the ANN pre-
577.4 567 4 585.0 576 dicted reS|quaIs ofthe two cases and those of the MLR models
597.7 588.2 599.4 600 are shown infable 7.
657.7 628.4 633.5 624 From the calculated results, a conclusion can be drawn
695.6 697.7 747.0 697 that ANN using®X, 2X and A1 as input variables can give
ggjg gizg ggg'g ggg the best-predicted results in this case. On the other hand, we
7935 731.7 720.2 716 found that the MI__R model gave worse predicted results than
731.6 743.0 731.6 724 those of ANN using X andAmz as the input values.
719.4 719.8 712.5 734
723.7 737.8 731.6 749
760.7 764.0 rea.r 763 6. Testing the established models
770.5 769.5 778.1 770
787.8 777.1 798.0 800 o . )
) In order to test the predictive ability of the established
Residuals 2.14% 1.90% 2.24%

ANN models, a test data set was constructed in the exper-
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Eb'ef‘d, e residuals of al - | 4 as tect ‘that the molecular connectivity inde®X has more corre-

€ predicted resiauals or a e experimental sampies used as test speci . . . .

mens in established ANN models 1at|qn to the retentlon_ |nc_i|ce§ of the hydrocarbons on the
stationary phase studied in this paper. According to the cal-

n-Octadecane 1-Octadecyl- 1-Octadecanol .
stationary phase (%) chloride stationary stationary phase C_UIated results of MLR_’ to all t_he three kinds of the S_ta-
phase (%) (%) tionary phase, only by introducing the new topological in-
Case| 372 T 439 dex Am1 can better-predicted results be acquired. Probably
Casell 341 397 3.06 the new topological indeXdm1 can represent the retention

behavior of the compounds on the stationary phase better
than the molecular connectivity indic&. The predicted

) ) , , retention indices on the-octadecane stationary phase in
imental samples acquired from each kind of GC stationary cqe | versus the experimental retention indices is shown in
phase. In each experimental data set, every experimental samg; g.4
ple was applied as test sample once while the other samples

were used as training or verification data set. All the cor-

responding established ANN models were based on the op-Acknowledgements

timized structures of neural networks. The predicted resid-

uals between the target and the predicted retention indices The financial support of the National Natural Science
were also calculated by formuld). All the calculated re-  Foundation of China (No. 20445002) is gratefully acknowl-
sults of this section are listed ifable 8. It is shown that for  edged.
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